龍吉生, 劉志偉. 紅外熱成像管理系統(tǒng)在垃圾焚燒爐自動(dòng)燃燒控制中的應(yīng)用[J]. 環(huán)境衛(wèi)生工程, 2022, 30(2): 1-8.LONG J S, LIU Z W. Application of infrared thermal imaging management system in automatic combustion control of waste incinerator[J]. Environmental Sanitation Engineering, 2022, 30(2): 1-8. 首次在生活垃圾焚燒爐上應(yīng)用紅外成像管理系統(tǒng)。利用黑體輻射理論、CCD探測器、紅外成像技術(shù)同時(shí)將火焰畫面、火焰溫度同時(shí)分區(qū)域且精準(zhǔn)的在垃圾焚燒爐上應(yīng)用,在國內(nèi)少有先例。論文中涉及的技術(shù)已實(shí)際應(yīng)用于我國單爐垃圾處理量750 t/d的三段式列動(dòng)順推爐排爐中,此焚燒爐屬大型焚燒爐,運(yùn)用此形式爐排的焚燒爐在我國爐排爐總數(shù)量的占比達(dá)40%以上,方案和數(shù)據(jù)具有一定推廣和參考價(jià)值。生活垃圾焚燒爐自動(dòng)燃燒控制(ACC)系統(tǒng)對各種焚燒爐運(yùn)行參數(shù)的測量要求較高,需要進(jìn)一步優(yōu)化和提升各輔助測量裝置的適應(yīng)性和準(zhǔn)確性。對紅外熱成像管理系統(tǒng)和傳統(tǒng)攝像機(jī)成像監(jiān)視系統(tǒng)的性能進(jìn)行了比較,并對其嵌入ACC系統(tǒng)的方式,以及對整個(gè)ACC系統(tǒng)的提升和運(yùn)行效果進(jìn)行了闡述。紅外熱成像管理系統(tǒng)以適當(dāng)方式嵌入ACC系統(tǒng)后,可靈活實(shí)現(xiàn)焚燒爐內(nèi)火焰和煙氣溫度的分區(qū)精準(zhǔn)顯示,作為輔助手段對ACC系統(tǒng)的穩(wěn)定運(yùn)行有明顯提升作用。- 典型內(nèi)窺式數(shù)字高清爐膛火焰監(jiān)視系統(tǒng)
- 系統(tǒng)概述及主要結(jié)構(gòu)原理
當(dāng)前生活垃圾焚燒爐廣泛采用的爐膛火焰監(jiān)視系統(tǒng)基本上都是由早期應(yīng)用在水泥廠、鋼鐵廠的加熱爐、退火爐和氧化鋁廠等行業(yè)內(nèi)的高溫看火工業(yè)電視演變升級而來。內(nèi)窺式數(shù)字高清爐膛火焰監(jiān)視系統(tǒng)成像裝置主要由耐高溫針孔電動(dòng)鏡頭、寶石物鏡、光學(xué)濾光片、光圈焦距調(diào)節(jié)器等組成,配有電控推進(jìn)器、氣源控制柜、光端機(jī)等輔助設(shè)備。其核心問題是如何在生活垃圾焚燒爐的高溫、多塵、強(qiáng)腐蝕環(huán)境中長周期穩(wěn)定運(yùn)行,保證火焰畫面不丟包、不失真。1)優(yōu)勢特性分析。一是技術(shù)成熟、運(yùn)行穩(wěn)定。隨著我國近一二十年間生活垃圾發(fā)電廠的興建,爐膛火焰監(jiān)視系統(tǒng)的技術(shù)也處于不停地優(yōu)化和迭代之中,目前已能滿足穩(wěn)定、可靠的要求。其中常規(guī)配置參數(shù)為攝像頭300 萬像素,響應(yīng)時(shí)間2 s,光圈(F數(shù))1.6,焦距2.4 mm。二是工作環(huán)境好。爐膛火焰監(jiān)視器探頭通常安裝于焚燒爐后墻,所處位置是垃圾燃燒最末端,常規(guī)工況下探頭周圍煙氣溫度通常<600 ℃。較之焚燒爐其他高溫環(huán)境已算“宜居地帶”。三是維護(hù)量小。焚燒爐后墻幾乎沒有結(jié)焦現(xiàn)象,常規(guī)爐膛火焰監(jiān)視探頭開孔位置僅存有因爐膛偶爾正壓時(shí)煙氣外冒造成的積灰,積灰量不大,清理工作較為輕松。2)劣勢特性分析。一是參數(shù)單一。因垃圾焚燒行業(yè)爐型構(gòu)造和燃燒成分的特殊性,垃圾焚燒爐長期采用的火焰探頭利用的是光學(xué)成像原理,運(yùn)行人員僅能通過觀察火焰形狀和位置來判斷焚燒爐工況,無法得到多維度參數(shù)。二是視角局限。爐膛火焰探頭通常位于焚燒爐后墻,安裝角度朝向爐內(nèi)成斜向上方向,與水平線夾角15°左右,探頭視場角通常>60°。以某大型列動(dòng)順推爐排焚燒爐為例,在此仰視角度下可以看到爐排燃燒段尾部、燃燼段前部兩面明顯的火焰幕墻,由于火焰鋒面遮擋,很難觀察到燃燒段中前部的火焰狀況。 以某單臺(tái)750 t/d大型列動(dòng)順推爐排焚燒爐中爐膛火焰監(jiān)視器安裝位置和顯示畫面為實(shí)例,具體分析火焰成像狀態(tài)。其實(shí)際火焰成像畫面見圖1。成像角度是由焚燒爐后墻探頭位置向上仰視爐膛。因焚燒工況十分良好,靠近后墻的燃燼段區(qū)域幾乎沒有明火,燃燒段尾部成一面豎直、光亮的黃紅色火焰鋒面,高度約為2.5 m。對應(yīng)的爐膛火焰監(jiān)視器安裝示意如圖2所示。爐膛火焰探頭安裝在焚燒爐后墻,安裝位置與后墻觀火平臺(tái)地面距離為C(m)。開孔傾角與水平方向夾角為B(°),有效視場角為A(°)。圖2中由黃色填充的三角形區(qū)域代表正常燃燒火焰,其中標(biāo)注高度2.5 m的區(qū)域?yàn)槿紵隣t排尾部火焰,即為圖1所顯示的火焰鋒面。顯然,從爐膛火焰監(jiān)視器向上望去,燃燒段前部、中部火焰為視野盲區(qū)。由于被燃燒段尾部火焰鋒面遮擋,通過火焰監(jiān)視器通常只能看到燃燒段尾部、燃燼段前部這兩個(gè)區(qū)域的火焰。紅外熱成像管理系統(tǒng)采用了高溫成像、熱輻射、紅外輻射檢測及計(jì)算機(jī)圖像處理等技術(shù),為運(yùn)行人員提供高清的爐膛內(nèi)火焰視頻分區(qū)監(jiān)視和燃燒火焰溫度場監(jiān)測。系統(tǒng)由耐高溫防腐紅外攝像儀、自動(dòng)回縮保護(hù)裝置、安裝套件、氣路和電氣控制箱、圖像數(shù)據(jù)服務(wù)器等組成,紅外熱成像監(jiān)視系統(tǒng)見圖3。該系統(tǒng)的重點(diǎn)構(gòu)成要素為與生活垃圾焚燒爐燃燒特性相匹配的圖像數(shù)據(jù)服務(wù)器系統(tǒng)。每臺(tái)探頭支持自定義設(shè)置64個(gè)ROI區(qū),可編程最小、最大和平均溫度的測量,可自定義觸發(fā)測量/報(bào)警監(jiān)視和閾值監(jiān)視。火焰發(fā)光通常包含兩種機(jī)制:①黑體輻射發(fā)光(連續(xù)光譜);②化學(xué)發(fā)光(表現(xiàn)為帶狀或者線狀光譜)。本紅外熱成像系統(tǒng)利用的是火焰中的黑體輻射發(fā)光機(jī)制。而垃圾焚燒中黑體輻射發(fā)光來源又包括兩部分:①垃圾表面受熱發(fā)光;②懸浮在火焰中的微小炭黑顆粒受熱發(fā)光。以下將對紅外熱成像系統(tǒng)采集的光譜范圍進(jìn)行解析。
根據(jù)普朗克(Plank)黑體輻射定律,自然界的任何物體只要溫度高于絕對零度(-273.15 ℃),就會(huì)以電磁輻射的形式在非常寬的波長范圍內(nèi)發(fā)射能量,產(chǎn)生電磁波(輻射能)。不同的材料、溫度、表面光度及顏色,發(fā)出的紅外輻射強(qiáng)度都不同,大氣電磁光譜示意見圖4。普朗克輻射定律給出了黑體輻射的具體譜分布,在一定溫度下,單位面積的黑體在單位時(shí)間、單位立體角內(nèi)和單位波長間隔內(nèi)輻射出的能量見公式(1):式中:B(λ,T)為黑體的光譜輻射亮度(W?m-2?Sr-1?μm-1);T為黑體的絕對溫度(K);c為光速,c=2.998×108 m/s;h為普朗克常數(shù),h=6.626×10-34 J?s;K為波爾茲曼常數(shù),K=1.380×10-23 J/K。在一定溫度下,黑體的光譜輻射亮度存在一個(gè)極值,這個(gè)極值的位置與溫度有關(guān),這就是維恩位移定律(Wien):式中:λmax為最大黑體光譜輻射亮度處的波長(μm);T為黑體的絕對溫度(K);b為維恩常量,b=0.002 897 m·K(2.897×103μm·K)。根據(jù)Wien定律,我們可以估算,當(dāng)T=6 000 K時(shí),λmax為0.48 μm(綠色),這就是太陽輻射中大致的最大光譜輻射亮度處。當(dāng)T=300 K,λmax=9.6 μm,這就是地球物體輻射中大致最大光譜輻射亮度處。普朗克定律描述的黑體輻射在不同溫度下的頻譜見圖5。根據(jù)圖5中數(shù)據(jù),可以得到如下結(jié)論:隨著溫度升高,輻射能量增加,這是紅外輻射理論的出發(fā)點(diǎn),也是單波段紅外測溫設(shè)計(jì)的依據(jù)。隨著溫度升高,輻射峰值波長向短波方向移動(dòng),其規(guī)律符合Wien定律,即λmax?T=2 897.8 μm?K。這個(gè)公式解釋了為什么“高溫測溫儀”多采用短波,“低溫測溫儀”多采用長波。輻射能量隨溫度的變化率,短波比長波大,即短波處工作的“測溫儀”相對信噪比高,抗干擾性強(qiáng)。由Wien定律可以得出,溫度越高,輻射峰值的波長越短。所以為了使輻射接收器有一個(gè)較理想的信噪比,對于溫度越低的物體,可測量的輻射波長越長。近年來,利用光電轉(zhuǎn)換元件(Charge Coupled Device,CCD),即“電荷耦合元件”測量和監(jiān)測火焰溫度的方法受到越來越多的關(guān)注,國內(nèi)外先后開展了大量研究。CCD用于將鏡頭收集到的光信號(hào)轉(zhuǎn)變?yōu)殡娦盘?hào)從而進(jìn)行進(jìn)一步處理。日本因其先進(jìn)的電子技術(shù)及對環(huán)保的強(qiáng)烈意識(shí),最先在燃燒診斷中應(yīng)用了數(shù)字圖像處理技術(shù)。法國的Renier等通過CCD相機(jī)獲得物體表面圖像,隨后通過黑體爐標(biāo)定并利用輻射定律來得到輻射物體表面參數(shù),同時(shí)他們將濾光片加在CCD相機(jī)前來提高系統(tǒng)的靈敏性并擴(kuò)大測溫范圍。我國生活垃圾焚燒火焰產(chǎn)生的固體顆粒物主要為炭黑顆粒和飛灰,火焰面內(nèi)部固體顆粒為炭黑顆粒,而飛灰主要彌散在火焰面外部。炭黑顆粒相較于飛灰具有更小的結(jié)構(gòu)尺寸,意味著其擁有更大的比表面積,即更大的輻射表面積,進(jìn)而擁有更強(qiáng)的發(fā)射輻射能力。因此生活垃圾焚燒火焰連續(xù)光譜強(qiáng)度主要由其中的炭黑顆粒主導(dǎo)。生活垃圾焚燒后氣體產(chǎn)物如H2O、CO2、CO、NO等物質(zhì)的發(fā)射光譜多分布在近紫外和遠(yuǎn)紅外區(qū)域,而在λ為0.5~0.9 μm波段上很少有發(fā)射光譜存在,對于本系統(tǒng)的測溫效果幾乎沒有干擾。因此,在λ=0.5~0.9 μm波段上炭黑顆??杀徽J(rèn)為是火焰發(fā)射輻射的主導(dǎo)者,進(jìn)而將生活垃圾焚燒火焰輻射特性的研究轉(zhuǎn)變?yōu)槠渲刑亢陬w粒輻射特性的研究。而垃圾焚燒爐內(nèi)測量區(qū)域的火焰及煙氣溫度基本在700~1 200 ℃,對應(yīng)的黑體絕對溫度在973~1 473 K(圖5),此溫度下黑體輻射最強(qiáng)的波段集中在短波區(qū)域,因此為適應(yīng)垃圾焚燒爐的特性需要采取短波高溫?zé)岢上駜x。綜上所述,最終本系統(tǒng)選取的CCD響應(yīng)光譜范圍在0.4~1.0 μm,其中0.4~0.8 μm為可見光圖像, 0.8~1.0 μm的近紅外光用于測溫。對于垃圾焚燒來說,在0.4~1.0 μm波長區(qū)間主要存在的化學(xué)發(fā)光來自于Na、K、Rb等堿金屬的特征譜線,而這些譜線的波長大都≤0.8 μm,所以對用于測溫的0.8~1.0 μm波段影響較小。針對垃圾焚燒應(yīng)用環(huán)境存在爐溫波動(dòng)大、閾值范圍廣的現(xiàn)象,可以通過軟件對爐內(nèi)溫度閾值進(jìn)行設(shè)置,實(shí)現(xiàn)超溫報(bào)警、低溫報(bào)警,以實(shí)現(xiàn)當(dāng)爐內(nèi)局部的“熱點(diǎn)”溫度過高或者局部爐溫降低時(shí),分別通過降風(fēng)、減料和增風(fēng)、加料等操作來改善爐內(nèi)工況。某項(xiàng)目單臺(tái)750 t/d焚燒爐紅外成像畫面見圖6。因紅外探頭由焚燒爐后拱俯視爐內(nèi),所呈現(xiàn)的畫面并非為整體的火焰鋒面,而是分散的柱狀火焰。同區(qū)域火焰亮度、高度有明顯差異。相比爐膛火焰監(jiān)視器呈現(xiàn)的豎直火焰鋒面在縱向深度上有更為廣泛的視角跨度。圖6中所示藍(lán)色方框區(qū)域內(nèi)綠色數(shù)字為該點(diǎn)區(qū)域?qū)?yīng)的火焰實(shí)時(shí)溫度,該畫面選取了12個(gè)紅外溫度測點(diǎn)。圖6中第1行、第2行測點(diǎn)溫度值均在1 000 ℃以上,第3行溫度基本在950 ℃左右,第4行溫度在900 ℃左右。第2行的第3個(gè)測點(diǎn)的溫度最高,為1 204 ℃,所在測點(diǎn)位置的火焰也最為光亮刺眼,系統(tǒng)隨之發(fā)出了報(bào)警提示,溫度數(shù)字由綠色變?yōu)榧t色。由實(shí)例可見,測點(diǎn)反饋溫度值與實(shí)際的火焰狀況可以正確關(guān)聯(lián)。對應(yīng)的紅外熱成像系統(tǒng)探頭安裝示意如圖7所示。紅外探頭安裝在焚燒爐后拱,開孔位置與鍋爐后墻延長線的距離為H(m),開孔傾角與焚燒爐后拱平面夾角為G(°),有效視場角為F(°)。圖7中黃色填充的三角形區(qū)域代表正常燃燒火焰,其中標(biāo)注高度2.5 m的區(qū)域?yàn)槿紵挝膊炕鹧?。因安裝在鍋爐后拱采用俯視角度,可避開燃燒段尾部火焰鋒面,測量到燃燒段中部、前部區(qū)域火焰狀態(tài)和溫度。現(xiàn)場實(shí)景照片見圖8。圖8 紅外熱成像探頭安裝現(xiàn)場實(shí)景照片1)優(yōu)勢特性分析。一是視角寬廣。紅外熱成像探頭安裝在焚燒爐后拱,以俯視的角度觀察燃燒段整段區(qū)域和燃燼段前部區(qū)域。二是技術(shù)先進(jìn)。紅外攝像儀系統(tǒng)由紅外攝像機(jī)、紅外耐高溫防腐蝕鏡頭、耐高溫防腐蝕防護(hù)罩組成,整體滿足耐高溫防腐蝕的要求;紅外高溫成像系統(tǒng)采用先進(jìn)算法,通過基于PC設(shè)計(jì)的圖像數(shù)據(jù)服務(wù)器處理后,形成實(shí)時(shí)溫度和可視圖像。三是靈活度高。這種先進(jìn)的雙波長成像系統(tǒng)和實(shí)時(shí)數(shù)據(jù)采集及處理系統(tǒng)的組合,使操作員能夠清晰地觀察燃燒區(qū)域的燃燒狀況,并能同時(shí)監(jiān)測爐排上方任意感興趣區(qū)域的溫度。系統(tǒng)分辨率為1 440 × 1 080,響應(yīng)時(shí)間≤2 s,光圈(F數(shù))為1.6,焦距為2.4 mm,漸暈系數(shù)<3%。2)劣勢特性分析。安裝位置環(huán)境較差,存在鍋爐結(jié)焦。因?yàn)榘惭b位置在焚燒爐后拱,開孔周圍溫度通常在700 ℃以上,在焚燒爐后拱開孔洞壁上,煙氣流速降低,部分粉塵分離沉積下來,多數(shù)是沿著爐墻壁向下流動(dòng),在鍋爐負(fù)荷不穩(wěn)的情況下,交替結(jié)成片層狀的焦塊,在自身重力的作用下脫落,當(dāng)高負(fù)荷、高煙溫時(shí),疏松的焦塊還可能達(dá)到深度熔融狀態(tài),爐膛溫度下降時(shí)再次凝結(jié)成更堅(jiān)固密實(shí)的焦塊。長時(shí)間結(jié)焦會(huì)對紅外探頭的成像區(qū)域有一定程度的縮減。根據(jù)項(xiàng)目現(xiàn)場觀察,以每次起爐時(shí)間開始計(jì)算,6個(gè)月周期之后,因結(jié)焦造成的視野盲區(qū)比例約占總成像區(qū)域的10%~15%?,F(xiàn)階段處理結(jié)焦問題的主要方式如下:①只是探頭前端鏡片輕微結(jié)焦,可以通過增加清焦結(jié)構(gòu)比如刮片來進(jìn)行清焦工作;②探頭前端爐墻位置結(jié)焦,焦體不只在鏡片上,此時(shí)可以通過結(jié)合空氣炮清理非附著在探頭表面的焦塊。除了上述兩種運(yùn)行中處理結(jié)焦的方式,每次停爐后進(jìn)入爐內(nèi)進(jìn)行人工打焦工作也是極其有效和必要的。- 紅外熱成像管理系統(tǒng)與傳統(tǒng)焚燒爐ACC系統(tǒng)相結(jié)合
ACC系統(tǒng)是以理論計(jì)算設(shè)計(jì)為基礎(chǔ),以鍋爐主蒸汽流量為核心控制目標(biāo),以垃圾料層厚度、一次風(fēng)系統(tǒng)母管壓力、爐排下各風(fēng)室一次風(fēng)流量、燃燒和燃燼爐排上部溫度(熱灼減率)、氧氣濃度等參數(shù)為次要控制目標(biāo),以垃圾熱值和占比動(dòng)態(tài)測量為給料量核算依據(jù),通過改變給料量和供風(fēng)量的手段,來實(shí)現(xiàn)運(yùn)行人員的極少干預(yù)。其中供風(fēng)量的調(diào)整,主要閉環(huán)調(diào)節(jié)是以主蒸汽量的變化為最高權(quán)重。而溫度控制(燃燒和燃燼段上部熱電偶溫度變化值)作為輔助的閉環(huán)調(diào)節(jié)之一,權(quán)重占比較輕,約占5%~10%。
根據(jù)工藝設(shè)計(jì)和焚燒爐結(jié)構(gòu),從燃燒段至燃燼段前部為垃圾的燃燒區(qū)域,爐排底部依次有4行風(fēng)室,即圖7中所示2、3、4和5行風(fēng)室,每行各有3列,共計(jì)12個(gè)風(fēng)室。按照前述的項(xiàng)目實(shí)例,圖6中的12個(gè)紅外溫度測點(diǎn),可以得到依次對應(yīng)12個(gè)風(fēng)室上部的火焰圖像和燃燒溫度。在傳統(tǒng)ACC系統(tǒng)中,一次風(fēng)的理論供風(fēng)量主要依據(jù)垃圾熱值、垃圾占比、蒸發(fā)量設(shè)定值、鍋爐熱效率等參數(shù)計(jì)算得到,在得到理論計(jì)算值后,會(huì)根據(jù)鍋爐負(fù)荷、垃圾料層厚度、垃圾濕度、燃燒和燃燼段上部溫度等參數(shù)的波動(dòng)對理論計(jì)算值進(jìn)行修正。其中溫度參數(shù)是由安裝在焚燒爐墻兩側(cè)的熱電偶反饋而來,爐溫?zé)犭娕嫉拈L度一般為1.0~1.3 m,除去爐墻壁厚,熱電偶露出爐內(nèi)的長度一般在250 mm左右,熱電偶材質(zhì)為鎳鉻-鎳硅,熱電偶前端耐磨頭長度為250~300 mm,耐磨頭材質(zhì)為鈷60。由于能夠反饋的溫度只能是熱電偶周圍溫度,因此會(huì)造成3點(diǎn)限制:①測點(diǎn)數(shù)量有限,若熱電偶數(shù)量增加,鍋爐開孔數(shù)量也要隨之上升,通常燃燒和燃燼區(qū)域安裝熱電偶數(shù)量為4~6支;②耦合性較高,抗干擾能力較低,其中的溫度修正系數(shù)雖然權(quán)重占比不大,但由于熱電偶數(shù)量有限,其單一溫度值對整體其他區(qū)域有連鎖影響,因此局部溫度與局部風(fēng)量無法一一獨(dú)立對應(yīng);③準(zhǔn)確性存在衰減,熱電偶的原理是溫度信號(hào)轉(zhuǎn)換成熱電動(dòng)勢信號(hào),通過二次儀表呈現(xiàn)被測介質(zhì)溫度。而隨著磨損、腐蝕的加重,其準(zhǔn)確性也逐漸衰減。其中鎳硅合金中的硅和鎳的優(yōu)先氧化是引起鎳鉻-鎳硅熱電偶熱電動(dòng)勢超差、準(zhǔn)確性降低的主要原因。根據(jù)上述內(nèi)容,我們在得到理論計(jì)算風(fēng)量之后,針對每一段風(fēng)室進(jìn)行獨(dú)立的風(fēng)量修正。圖9中:M為對應(yīng)區(qū)域內(nèi)溫度設(shè)定值(℃);H為垃圾層厚度偏差百分比(%);P為對應(yīng)區(qū)域內(nèi)溫度實(shí)時(shí)反饋值(℃);K為對應(yīng)區(qū)域內(nèi)溫度變化率(℃/min);√ ̄為速度變化率高低限范圍(℃/min);LCUT為低切保護(hù)模塊(℃);LAG為高階濾波模塊(℃);A為理論計(jì)算風(fēng)量(m3/h);B為實(shí)際輸出計(jì)算風(fēng)量(m3/h)。如圖9所示,X區(qū)域?qū)崟r(shí)反饋溫度經(jīng)過低切保護(hù)模塊LCUT和濾波模塊LAG后,與預(yù)設(shè)值M進(jìn)行比較,計(jì)算的差值進(jìn)入溫度-風(fēng)量折算函數(shù)F(x)。同時(shí)根據(jù)溫度上升和下降的速度變化率K,對函數(shù)的輸出速率進(jìn)行擾動(dòng),改變其響應(yīng)速度。首先X區(qū)域的理論計(jì)算風(fēng)量是耦合前原有ACC系統(tǒng)通過垃圾熱值、垃圾占比、鍋爐蒸發(fā)量、氧氣含量、鍋爐焓值等一系列參數(shù)計(jì)算出來的爐排下一次風(fēng)支管風(fēng)量,是實(shí)時(shí)變化的動(dòng)態(tài)數(shù)值,而X區(qū)域的溫度預(yù)設(shè)值M與反饋值P的差值反映的是X區(qū)域內(nèi)垃圾焚燒過于劇烈,還是處于未完全燃燒狀態(tài)。因?yàn)槔贌^程的復(fù)雜性,可以做出以下關(guān)系函數(shù):一方面在爐內(nèi)垃圾層厚度等于或大于理論的標(biāo)準(zhǔn)厚度前提下,當(dāng)X區(qū)域溫度M大于P則風(fēng)量減少,當(dāng)X區(qū)域溫度M小于P則風(fēng)量增加,當(dāng)X區(qū)域溫度M等于P則保持原有ACC計(jì)算風(fēng)量不變,此時(shí)選擇公式F1(x)內(nèi)部函數(shù);另一方面在爐內(nèi)垃圾層厚度小于標(biāo)準(zhǔn)厚度前提下,此時(shí)判斷料層過薄,風(fēng)量太大容易出現(xiàn)燒空、燒斷料的情況,因此當(dāng)M與P的差值為正數(shù)或負(fù)數(shù)時(shí)都會(huì)適當(dāng)減少風(fēng)量,但根據(jù)溫度的高或低對應(yīng)減少風(fēng)量的幅度會(huì)不同,此時(shí)利用F2(x)內(nèi)部函數(shù)。12個(gè)溫度劃分區(qū)域都基于此耦合邏輯,具體設(shè)定參數(shù)適時(shí)調(diào)整。通過干擾獨(dú)立配風(fēng)的風(fēng)量,達(dá)到改變整個(gè)焚燒爐一次風(fēng)風(fēng)量的效果。- 判斷標(biāo)準(zhǔn)及運(yùn)行效果
生活垃圾焚燒爐的排放物在滿足GB 18485—2014 生活垃圾焚燒污染控制標(biāo)準(zhǔn)的前提下,為保障焚燒爐的長期安全運(yùn)行、汽機(jī)系統(tǒng)的穩(wěn)定高效運(yùn)轉(zhuǎn),通常通過爐溫和主蒸汽流量這兩個(gè)因素來判斷鍋爐運(yùn)行是否良好。以下工況為某項(xiàng)目單臺(tái)750 t/d生活垃圾焚燒爐在紅外熱成像管理系統(tǒng)應(yīng)用前、應(yīng)用后兩段時(shí)期的實(shí)際運(yùn)行參數(shù),以此實(shí)例來解析該系統(tǒng)的運(yùn)行效果。該項(xiàng)目額定主蒸汽流量為74 t/h。如圖10所示,藍(lán)色實(shí)線為耦合前24 h變化率波動(dòng)范圍,紅色實(shí)線為耦合后24 h變化率波動(dòng)范圍。爐溫變化率指的是焚燒爐上、中、下3層共計(jì)9個(gè)溫度測點(diǎn)的熱電偶反饋溫度在每分鐘內(nèi)升高或降低的溫度值,而溫度變化率波動(dòng)范圍指的是單位時(shí)間內(nèi)溫度變化率最高值與最低值之間的溫度差,該差值越大表明爐溫波動(dòng)越大,即工況越不穩(wěn)定,波動(dòng)范圍越小表明工況越平穩(wěn)。此期間溫度也一直未低于環(huán)保部要求的最低限(850 ℃/2 s),均介于950~1 050 ℃。焚燒爐主蒸汽流量曲線如圖11所示,左側(cè)縱坐標(biāo)為主蒸汽流量,額定蒸發(fā)量74 t/h。圖中藍(lán)色實(shí)線為紅外熱成像系統(tǒng)與ACC系統(tǒng)耦合前24 h的主蒸汽流量曲線,紅色虛線為紅外熱成像系統(tǒng)與ACC系統(tǒng)耦合后24 h的主蒸汽流量曲線。表1中參數(shù)可以計(jì)算出耦合前后焚燒爐爐溫波動(dòng)范圍相對縮減了24.5%,焚燒爐爐溫均值提高了1.2%,蒸發(fā)量波動(dòng)幅度縮減了3個(gè)百分點(diǎn),主蒸汽流量提高了1.4 t/h。經(jīng)過對主要運(yùn)行參數(shù)的定量分析,可以看出結(jié)合了紅外熱成像系統(tǒng)的ACC系統(tǒng)在功能性和穩(wěn)定性上有顯著提升。表1 重要運(yùn)行參數(shù)統(tǒng)計(jì)基于目前紅外熱成像管理系統(tǒng)的功能,正在逐步進(jìn)行焚燒爐溫度場重構(gòu)工作,對于紅外探頭收集的大量溫度點(diǎn)實(shí)時(shí)數(shù)據(jù)進(jìn)行整合并進(jìn)行紅外溫度顯示。傳感器擁有1 440×1 080個(gè)像素,其中每個(gè)像素都有對應(yīng)的溫度值,該溫度值隨著目標(biāo)溫度的變化在800~1 600 ℃對應(yīng)變化,那么我們就可以將800~1 600 ℃這個(gè)范圍內(nèi)的溫度數(shù)據(jù)映射到顏色空間中特定的彩色序列,只要在程序中明確規(guī)定溫度和顏色之間的映射函數(shù)和映射表即可實(shí)現(xiàn)相應(yīng)的偽彩顯示,即熱像圖的形式。這樣可為運(yùn)行人員提供更為直觀、立體的參考依據(jù),待溫度場重構(gòu)系統(tǒng)成熟后,再與ACC系統(tǒng)進(jìn)行結(jié)合,進(jìn)一步提高全廠的自動(dòng)化程度。紅外熱成像管理系統(tǒng)在生活垃圾焚燒控制領(lǐng)域,與傳統(tǒng)ACC系統(tǒng)經(jīng)過合理的設(shè)計(jì)、安裝、邏輯耦合后,對焚燒自動(dòng)化有以下幾個(gè)方面的改變和提升。1)視野擴(kuò)大。改變探頭安裝位置后,成像角度由仰視變?yōu)楦┮?,拓寬了爐內(nèi)火焰視場角度?;鹧娉上裥螤钣伞耙幻婊饓Α?提升為“一片火海”。在具備最基本的“遠(yuǎn)程看火”功能前提下,為運(yùn)行人員提供更強(qiáng)有力的參考依據(jù)。2)測溫準(zhǔn)確。紅外熱成像原理相比傳統(tǒng)光學(xué)成像原理,增加了溫度反饋功能。利用軟件管理系統(tǒng),將溫度信號(hào)解析,并與實(shí)際區(qū)域一一對應(yīng)。3)靈活性高。溫度測點(diǎn)的選定可通過管理軟件任意選擇,調(diào)試結(jié)束后仍可根據(jù)實(shí)際工況進(jìn)行設(shè)置和改變。4)耦合性強(qiáng)。紅外熱成像管理系統(tǒng)除現(xiàn)有功能外更像是一個(gè)平臺(tái),可以對現(xiàn)有溫度參數(shù)和火焰狀態(tài)的大量數(shù)據(jù)進(jìn)行進(jìn)一步提升和利用,例如正在進(jìn)行的溫度場成像功能優(yōu)化和升級工作。5)效益提升。紅外熱成像管理系統(tǒng)融入ACC系統(tǒng)后,對焚燒爐溫度、鍋爐主蒸汽流量的穩(wěn)定性有顯著提升。對減少運(yùn)行人員工作量、增加產(chǎn)汽量、發(fā)電量等焚燒廠經(jīng)濟(jì)效益方面有不同程度提升。
撰稿:原文作者
責(zé)任編輯:王雅楠
博士,上海康恒環(huán)境股份有限公司董事長兼首席科學(xué)家、國務(wù)院政府特殊津貼專家、浙江大學(xué)校外導(dǎo)師、華中科技大學(xué)兼職教授、重慶大學(xué)名譽(yù)教授、福岡大學(xué)客座教授。1994年獲日本東京農(nóng)工大學(xué)博士學(xué)位,1998年任原國家教委“春暉計(jì)劃”海外環(huán)保專家,1999年獲日本技術(shù)士資質(zhì)(衛(wèi)生工學(xué)和綜合技術(shù)監(jiān)理,NO.40558),2017年入選上海市領(lǐng)軍人才?,F(xiàn)為國家發(fā)改委及財(cái)政部PPP專家,住建部科技委城市環(huán)境衛(wèi)生專委會(huì)委員和可持續(xù)發(fā)展與資環(huán)專委會(huì)委員、中國城市環(huán)衛(wèi)協(xié)會(huì)副會(huì)長。專注垃圾焚燒發(fā)電與污染物控制技術(shù)研發(fā)及應(yīng)用近30年。近5年來,作為負(fù)責(zé)人先后承擔(dān)國家重點(diǎn)研發(fā)計(jì)劃子課題、國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目、上海市服務(wù)業(yè)發(fā)展引導(dǎo)資金項(xiàng)目10余項(xiàng)。獲得授權(quán)專利151項(xiàng),其中發(fā)明專利14項(xiàng)。發(fā)表各類學(xué)術(shù)論文50多篇,參編著作4部。參與編制或修編標(biāo)準(zhǔn)規(guī)范9項(xiàng)。
特此聲明:
1. 本網(wǎng)轉(zhuǎn)載并注明自其他來源的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)。
2. 請文章來源方確保投稿文章內(nèi)容及其附屬圖片無版權(quán)爭議問題,如發(fā)生涉及內(nèi)容、版權(quán)等問題,文章來源方自負(fù)相關(guān)法律責(zé)任。
3. 如涉及作品內(nèi)容、版權(quán)等問題,請?jiān)谧髌钒l(fā)表之日內(nèi)起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)益。